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a b s t r a c t

N6-methyladenosine (m6A) is one of the most common and abundant post-transcriptional RNA modi-
fications found in viruses and most eukaryotes. m6A plays an essential role in many vital biological
processes to regulate gene expression. Because of its widespread distribution across the genomes, the
identification of m6A sites from RNA sequences is of significant importance for better understanding the
regulatory mechanism of m6A. Although progress has been achieved in m6A site prediction, challenges
remain. This article aims to further improve the performance of m6A site prediction by introducing a new
heuristic nucleotide physicalechemical property selection (HPCS) algorithm. The proposed HPCS algo-
rithm can effectively extract an optimized subset of nucleotide physicalechemical properties under the
prescribed feature representation for encoding an RNA sequence into a feature vector. We demonstrate
the efficacy of the proposed HPCS algorithm under different feature representations, including pseudo
dinucleotide composition (PseDNC), auto-covariance (AC), and cross-covariance (CC). Based on the
proposed HPCS algorithm, we implemented an m6A site predictor, called M6A-HPCS, which is freely
available at http://csbio.njust.edu.cn/bioinf/M6A-HPCS. Experimental results over rigorous jackknife tests
on benchmark datasets demonstrated that the proposed M6A-HPCS achieves higher success rates and
outperforms existing state-of-the-art sequence-based m6A site predictors.

© 2016 Elsevier Inc. All rights reserved.
N6-methyladenosine (m6A) is one of the most prevalent post-
transcriptional RNA modifications [1e3] and plays a critical role
in a number of biological processes, including mRNA splicing,
export, stability, immune tolerance, and transcription [4e10]. Cur-
rent research has revealed that the m6A modification is a dynamic
and reversible process that affects the gene regulation function in
apoptosis, circadian rhythm, and meiosis [11e15]. Fig. S1 in online
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Supplementary Material S1 illustrates the reversible procedure of
N6-methylation and demethylation in mRNA. Besides that, m6A
modification is intimately correlated with human diseases,
including obesity, cancer, infertility, and hepatitis [4,16e20].
Therefore, accurately obtaining knowledge of m6A is vitally
important for both basic research and drug development.

With the development of high-throughput m6A profiling tech-
niques such as MeRIP-Seq [2,21] and m6A-seq [22], the
transcriptome-wide maps of m6A distributions are now available for
several species, including Oryza sativa [23], Saccharomyces cerevisiae
[15], Mus musculus [1], and Homo sapiens [1]. These studies have
provided deep insights into the distributions of m6A modification
sites and stimulated the development of this area. Nevertheless, the
current pure biochemical experimental methods for targeting m6A
sites are both expensive and time-consuming. With advanced
sequencing technology and concerted genome projects, large vol-
umes of RNA sequences have been accumulated; thus, developing
intelligent computational methods for fast and accurate detection of
m6A sites from RNA sequences would be especially useful.
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Until now, several computational methods have been developed
to predict post-translational modification sites, such as lysine
ubiquitination sites [24], enzyme catalytic sites [25], lysine succi-
nylation sites [26], and methylation sites [27e31], from primary
sequences. Among these methods, Chen and coworkers performed
pioneering work and developed a first m6A site predictor called
iRNA-Methyl [28]. Each RNA sequence sample in iRNA-Methyl was
formulated with pseudo dinucleotide composition (PseDNC), into
which three RNA physicalechemical properties were incorporated.
However, the performance of iRNA-Methyl is not satisfactory, and
the overall accuracy success rate is only 65.59%. Recently, Liu and
coworkers [27] developed a machine-learning-based predictor
called pRNAm-PC. pRNAm-PC encodes each RNA sequence sample
into a feature vector by performing a series of auto-covariance (AC)
and cross-covariance (CC) transformations on a physicalechemical
matrix of nucleotides and uses a support vector machine (SVM) as a
prediction engine. Experimental results demonstrated that
pRNAm-PC achieved remarkably higher success rates with an
overall accuracy success rate of 69.74%.

Although progress has been made in designing computational
methods for targeting m6A sites from RNA sequences, there are still
several issues that deserve further investigation. First, knowing
which physicalechemical properties of nucleotides are prominent
for targeting m6A sites is still a problem. In iRNA-Methyl [28], only
three physicalechemical properties of nucleotidesdenthalpy, en-
tropy, and free energydwere used to encode each RNA segment
into a PseDNC feature; while in pRNAm-PC [27], 10 phys-
icalechemical properties of nucleotides were used to construct the
combined feature based on AC and CC transformations, and the
prediction performance has been remarkably improved. However,
there are many other physicalechemical properties of nucleotides
that can be used such as local structural properties [32], entropy
and enthalpy [33], energy [34,35], nucleotide content [36], hydro-
philicity [37], and elastic behavior [38]. Nevertheless, in both iRNA-
Methyl [28] and pRNAm-PC [27], the authors only provided the
prediction performances under several physicalechemical proper-
ties but did not explain why these properties were selected. Hence,
how to measure the significance of these physicalechemical
properties for the prediction of m6A sites is still a critical problem
worthy of further study.

Second, although pRNAm-PC performed much better than pre-
vious predictors, its prediction performances still need to be
improved for potential practical application.

This article aims to address these two issues, and a newm6A site
predictor called M6A-HPCS (heuristic nucleotide physicalechemical
property selection) is proposed. First, the concepts of the relative
gain and direct gain of physicalechemical property are introduced to
measure the significance of a physicalechemical property for tar-
geting the m6A sites. Then, a heuristic algorithm based on the
relative gains and direct gains of physicalechemical properties is put
forward to optimize a subset of physicalechemical properties under
the prescribed feature representation method. After that, RNA
samples can be encoded into feature vectors according to the opti-
mized subset of physicalechemical properties. Finally, an SVM is
used as a prediction engine to construct M6A-HPCS on the training
dataset with the developed feature set. Rigorous jackknife tests on
the benchmark dataset demonstrate the superiority of the proposed
M6A-HPCS over the existingm6A site predictors. Below, we describe
the aforementioned steps one by one.

1. Materials and methods

1.1. Benchmark dataset

In this study, the datasets were constructed from 1183 genes in
S. cerevisiae genome [15]. Wet lab experiments identified that the
genome contained 1307 methylated adenine sites and 33,280 non-
methylated adenine sites with a consensus motif “GAC” [15]. To
obtain a high-quality training dataset with balanced class samples,
1307 negative samples from the 33,280 non-methylated adenine
sites were selected as negative samples [28]. The 1307 positive and
1307 negative samples constitute the final dataset. Note that the
maximal sequence identity among the dataset was reduced to 85%
by using CD-HIT [39], and the self-conflicted samples in the dataset
were also excluded [28].

The RNA samples in the dataset can be uniformly formulated as

RxðGACÞ ¼ N�xN�ðx�1Þ/N�2N�1GACNþ1Nþ2/Nþðx�1ÞNþx;

(1)

where the GAC represents the consensus motif, the center A rep-
resents adenine, the subscript x is an integer, N�x represents the x-
th upstream nucleotide from the center GAC, and Nþx represents
the x-th downstream nucleotide from the center GAC. Hence, the
length of RNA sequence segment Rx(GAC) is 2xþ 3. Previous studies
[28,40] have proven that x¼24 is a better choice for designing a
machine-learning-based m6A site predictor. In this study, we also
took this configuration. Accordingly, each RNA sequence sample in
the benchmark dataset consists of (2xþ 3)¼ 51 nucleotides. Each
Rx(GAC) can be further classified into the following two categories:

RxðGACÞ2
(
Rþx ðGACÞ; if its centre is a methylation site
R�x ðGACÞ; otherwise

; (2)

where Rþ
x
ðGACÞ denotes a positive sequence sample if its center

adenine can be N6-methylated, whereas R�x ðGACÞ denotes a nega-
tive sequence sample if its center adenine cannot be N6-methyl-
ated, the symbol 2 means “a member of” in set theory. Hence, the
benchmark dataset Sx can be formulated as

Sx ¼ Sþ
x
∪S�x ; (3)

where the positive subset Sþ
x
consists only of the methylation RNA

segments, S�x contains only the samples of the non-methylation
RNA segments, and ∪ represents the symbol for “union” in set
theory.
1.2. Feature representation of RNA sequence

Each RNA sequence sample, denoted as R, in the dataset as
defined in Eq. (3) can be reformulated as follows:

R ¼ N1N2/Ni/NL; (4)

where Ni (1� i� L) represents the i-th nucleotide in RNA sequence
sample R and L is the length of R. Each Ni belongs to one of the four
native nucleotides, that is, Ni 2 {A (adenine), C (cytosine), G
(guanine), U (uracil)}. For designing a machine-learning-based m6A
site predictor, a critical step is how to transform each RNA sequence
sample as formulated in Eq. (4) to a feature vector with fixed length.
The underlying reason is that most of the existing machine-
learning algorithms can handle only vectors but not sequence
samples, as elaborated in Ref. [41]. Motivated by the wide and
successful use of pseudo amino acid composition or Chou's pseudo
amino acid composition (PseAAC) in the areas of computational
proteomics with protein/peptide sequences [42,43], recently the
concept of pseudo k-tuber nucleotide composition has been
developed to deal with DNA/RNA sequences in computational ge-
netics and genomics [44e48]. According to Ref. [49], the general
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form of pseudo composition for RNA sequence samples can be
formulated by

½J1 J2 / Ji / JU�T ; (5)

where the symbol T is the transpose operator and the subscript U is
an integer to reflect the vector's dimension. The value of U, as well
as the componentsJi (i¼ 1,2,/, U), will depend on how to extract
the desired information from the RNA sequence sample of Eq. (4).
Next, we describe how to encode each RNA sequence sample into a
fixed-length feature vector as formulated in Eq. (5) based on the so-
called physicalechemical property matrix.

1.2.1. Physicalechemical property matrix
Because two individual nucleotides can be polymerized into a

dimer or dinucleotide, there are in total 4� 4¼16 types of native
dinucleotides in RNA sequences: AA, AC, AG, AU, CA, CC, CG, CU, GA,
GC, GG, GU, UA, UC, UG, and UU. Clearly, different dinucleotides
possess different physicalechemical properties. Hence, we can
encode an RNA sequence into a feature vector by using multiple
physicalechemical properties. In the current study, the following
23 types of physicalechemical (PC) properties were considered: (1)
PC1: rise [32]; (2) PC2: roll [32]; (3) PC3: shift [32]; (4) PC4: slide
[32]; (5) PC5: tilt [32]; (6) PC6: twist [32]; (7) PC7: stacking energy
[32]; (8) PC8: enthalpy [33]; (9) PC9: enthalpy2 [33]; (10) PC10:
entropy [33]; (11) PC11: entropy2 [34]; (12) PC12: free energy [34];
(13) PC13: free energy2 [34]; (14) PC14: adenine content [36]; (15)
PC15: cytosine content [36]; (16) PC16: GC content [36]; (17) PC17:
guanine content [36]; (18) PC18: keto (GT) content [36]; (19) PC19:
purine (AG) content [36]; (20) PC20: thymine content [36]; (21)
PC21: hydrophilicity [37]; (22) PC22: hydrophilicity2 [37]; (23) PC23:
base stacking energy [35]. Table S1 in online Supplementary Ma-
terial S2 summarizes the original values of the 23 phys-
icalechemical properties.

To facilitate the subsequent computation, we first normalize the
values of the 23 physicalechemical properties in Table S1 using the
following equation:

PCinormalizedðjÞ ¼
PCiðjÞ �MeanðiÞ

StdðiÞ ; (6)

where PCi(j) and PCi
normalizedðjÞ (1� i� 23, 1� j� 16) are the orig-

inal and normalized physicalechemical property values, respec-
tively, of the i-th physicalechemical property of the j-th
dinucleotide type, Mean(i) is the mean of the original values of 16
dinucleotides for the i-th physicalechemical property, and Std(i) is
the corresponding standard deviation. Table S2 in Supplementary
Material S2 presents the normalized values of the 23 phys-
icalechemical properties. For each type of the 23 phys-
icalechemical properties, the normalized values of the 16
dinucleotides have zero mean and unit variance.

Let u be the number of physicalechemical properties considered
(u ¼ 23 in this study). Then, based on the normalized values of
physicalechemical properties, an RNA sample R with L nucleotides
can be formulated with a u� (L�1) physicalechemical property
matrix (PCM), denoted as PCM(R), as follows:

PCMðRÞ ¼

2
664
PC1ðN1N2Þ PC1ðN2N3Þ / PC1ðNL�1NLÞ
PC2ðN1N2Þ PC2ðN2N3Þ / PC2ðNL�1NLÞ

/ / / /
PCuðN1N2Þ PCuðN2N3Þ / PCuðNL�1NLÞ

3
775; (7)

where PCi(NjNjþ1) is the i-th (1� i� u) physicalechemical property
value for the NjNjþ1 (1� j� L�1) dinucleotide in R.
The next key problem is how to extract effective feature for m6A

site prediction from the PCM of a given RNA sequence sample.
Currently, to the best of our knowledge, only two types of featur-
esdPseDNC [28] and the combination of AC and CC [27]dhave
been investigated for m6A site prediction, both based on PCM. In
view of this, we consider these two types of features to demon-
strate the effectiveness of the proposed physicalechemical prop-
erty selection algorithm (refer to “Optimized subsets of
physicalechemical properties” section in Results and Discussion
below).
1.2.2. PseDNC feature
Encouraged and stimulated by the successes of PseAAC [42,43]

in dealing with protein/peptide sequence, the concept of PseDNC
has been proposed to represent DNA/RNA sequence for identifying
m6A sites [28]. Given an RNA sequence sample Rwith L nucleotides
as defined in Eq. (4), the PseDNC feature vector of R, denoted as
fPseDNC, can be formulated as follows [28]:

fPseDNC ¼ ½f1 f2 / f16 f16þ1 f16þ2 / f16þl�T ; (8)

where

fk ¼

8>>>>>>>>><
>>>>>>>>>:

dkP16
i¼1 di þw

Xl
j¼1

qi

ð1 � k � 16Þ

wqk�16P16
i¼1 di þw

Xl
j¼1

qi

ð16< k � 16þ lÞ
(9)

where dk (1� k� 16) is the normalized occurrence frequency of the
k-th non-overlapping dinucleotides in the RNA sequence and qj
(1� j� l) is the j-tier correlation factor, which reflects the sequence
order correlation between all of the most contiguous dinucleotides
along the RNA sequence sample, defined as follows:

qj ¼
1

L� j� 1

XL�j�1

i¼1

J
�
NiNiþ1;NiþjNiþjþ1

� ðj

¼ 1; 2; / ; l; l< L� 1Þ; (10)

where the correlation function J(,) is given by

J
�
NiNiþ1;NiþjNiþjþ1

� ¼ 1
m

Xm
t¼1

�
PCtðNiNiþ1Þ � PCt

�
NiþjNiþjþ1

��2
;

(11)

where m is the number of the physicalechemical properties
considered and PCt(NiNiþ1) represents the value of the t-th phys-
icalechemical property for the dinucleotides NiNiþ1 in the RNA
sequence.

In Eq. (9), the parameter l is an integer representing the highest
counted tier of the correlation along the RNA sequence, whereas w
is the weight factor ranging from 0 to 1 for balancing the signifi-
cance of 2-tuple nucleotide compositions and correlation factors.
Accordingly, the dimensionality of the PseDNC feature is 16þ l.
1.2.3. Features derived from AC and CC transformations
Recently, Liu and coworkers [27] proposed a new and more

discriminative feature representation method for m6A site predic-
tion. This method extracts the feature of an RNA sequence by
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performing a series of AC and CC transformations with multiple
physicalechemical properties on the PCM of the RNA sequence.

For a given RNA sequence sample R with L nucleotides, a scalar
quantity AC (i,g), which reflects the correlation of the i-th phys-
icalechemical property between two subsequences separated by g
dinucleotides, can be extracted by performing AC transformation
on the i-th row of PCM(R) (refer to Eq. (7)) as follows:

ACði;gÞ¼
PL�1�g

j¼1

�
PCi

�
NjNjþ1

��PCi
��

PCi
�
NjþgNjþ1þg

��PCi
�

L�1�g
;

(12)

where 1� g�G, 1�G� L�2, and 1� i� u. Note that G is a pre-
defined integer and is the maximum value of g, u is the number of
physicalechemical properties considered, and PCi represents the
mean of the values in the i-th row of PCM(R) as defined in Eq. (7), as
given by

PCi ¼
PL�1

j¼1 PCi
�
NjNjþ1

�
L� 1

: (13)

Then, the set of AC feature components extracted by using Eq.
(12) can be formulated as follows:

fACði; gÞj1 � i � u; 1 � g � Gg: (14)

According to Eq. (14), we can clearly find that the dimensionality
of the AC feature is u�G if u types of physicalechemical properties
are considered.

Similarly, a scalar quantity CC (i1,i2,g) reflects that the correlation
between two subsequences, each belonging to different phys-
icalechemical properties, can be extracted by performing CC
transformation on PCM(R) (refer to Eq. (7)) as follows:
CCði1; i2; gÞ ¼
PL�1�g

j¼1

�
PCi1

�
NjNjþ1

�� PCi1

��
PCi2

�
NjþgNjþ1þg

�� PCi2
�

L� 1� g
; (15)
where 1� i1� u, 1� i2� u, i1s i2, 1� g�G, and 1�G� L�2, and G
is a predefined integer. Then, the set of CC feature components
extracted by using Eq. (15) can be formulated as follows:

fCCði1; i2; gÞj1 � i1 � u; 1 � i2 � u; i1si2; 1 � g � Gg:
(16)

Accordingly, the dimensionality of the CC feature extracted by
using Eq. (16) is u� (u�1)�G if u types of physicalechemical
properties are considered. Therefore, the dimensionality of the
combination of AC and CC feature vector, denoted as AC þ CC, is
u�Gþ u� (u�1)�G ¼ u� u�G.

1.3. Optimize the subset of physicalechemical properties using a
heuristic algorithm

As described in the “Feature representation of RNA sequence”
section above, currently only two types of featuresdPseDNC [28]
and the combination of AC and CC [27]dhave been investigated
for m6A site prediction. On the other hand, the discriminative
capability of both features heavily depends on the phys-
icalechemical properties used. In Ref. [28] three physicalechemical
properties of nucleotidesdenthalpy, entropy, and free ener-
gydwere used to extract the PseDNC feature, whereas in Ref. [27]
ten physicalechemical properties of nucleotides were taken to
construct the combination of AC and CC features. However, none of
them explains why those properties were selected from the phys-
icalechemical properties set. It would be especially useful if we
could distinguish which physicalechemical properties will have
much more positive impacts toward the prediction of m6A sites. In
the subsequent sections, we aimed to solve this problem by using a
heuristic algorithm that can select multiple optimized subsets of
physicalechemical properties based on their significances.

1.3.1. Measure the relative gain of physicalechemical property
Let Sall ¼ fPCigui¼1 be the set of u known physicalechemical

properties and S be a subset of Sall. Clearly, we can use phys-
icalechemical property-related feature representation methods
(e.g., PseDNC or ACþ CC described above) based on the elements in
S to encode RNA sequence samples. For the convenience of subse-
quent description, we uniformly term these feature representation
methods, which extract features based on S, as f(S).

We define the relative gain of physicalechemical property
(RGoPCP) as follows:

rg
�
PCi; f; S

	
¼ Acc

�
f
�
S∪

n
PCi

o		
� AccðfðSÞÞ; (17)

where PCi (PCi2Sall and PCi;S) represents the i-th phys-
icalechemical property and Acc(S) and Acc(f(S∪{PCi})) represent
the overall prediction accuracies under the feature representations
f(S) and f(S∪{PCi}), respectively, with a prescribed prediction en-
gine over cross-validation on a given dataset.

Note that the overall prediction accuracy (i.e., Acc in Eq. (17)) can
be evaluated by any feasible types of cross-validation. In this study,
10-fold cross-validation was taken. As to prediction engine, any
machine-learning algorithm can be used. In this study, we took
SVM as the prediction engine.
According to Eq. (17), the RGoPCP measures the relative gain of
accuracy for a physicalechemical property over a given subset of
physicalechemical properties. rg (PCi,f,S)> 0 represents a positive
gain; that is, the prediction accuracy generated by the phys-
icalechemical property subset S∪{PCi} is higher than that gener-
ated by the subset S. Accordingly, rg(PCi,f,S)< 0 denotes a negative
gain, where adding PCi into S will deteriorate the prediction
accuracy.

We define Acc(S)¼ 0 when S¼F (i.e., no physicalechemical
property exists in S). Then, Eq. (17) can be rewritten as

rg
�
PCi; f;F

	
¼ Acc

�
f
�n

PCi
o		

: (18)

In other words, rg(PCi,f,F) defined in Eq. (18) measures the direct
gain of the individual physicalechemical property PCi. In the sub-
sequent section, we demonstrate how to optimize the selection of
physicalechemical properties for m6A site prediction based on the
relative gain and direct gain defined in Eqs. (17) and (18),
respectively.
1.3.2. Optimize the subset of physicalechemical properties
Finding the optimal subset from a given physicalechemical

property set for a specific prediction task (e.g., m6A site prediction)



Algorithm 1

HPCS: A heuristic algorithm for optimizing subset of phys-

icalechemical properties.

Input: SallfPCig
u
i¼1: set of u physicalechemical properties; f(,):

predefined feature representation method; K: predefined

positive integer denoting how many subsets are generated

Output: Soptimized_subset: Optimized physicalechemical subset of Sall

Step 1 Rank the u physicalechemical properties

1.1 For each of the physicalechemical properties in Sall,

calculate its direct gain using Eq. (18) as follows:

rgðPCi; f;FÞ ¼ AccðfðfPCigÞÞ
1.2 Rank the u physicalechemical properties according to

their direct gains in descending order:

SRank ¼ fPCkRankg
u
k¼1

Step 2 Initialize the K candidate physicalechemical subsets

2.1 FOR k¼ 1, L, K

2.2 Sk)fPCkRankg
2.3 END FOR

Step 3 Expand the K candidate physicalechemical subsets

3.1 FOR k¼ 1, L, K

3.2 WHILE (TRUE)

3.3 For each of the remaining elements in SRank�Sk, denoted

as PCjRank, compute its relative gain [i.e., rgðPCj; f; SkÞ]
according to Eq. (17)

3.4 Locate the j*-th element, which has the maximal value of

rg, from SRank�Sk as follows:

j* ¼ max
j

rgðPCj; f; SkÞ, where PCj2SRank � Sk

3.5 IF rgðPCj* ; f; SkÞ>0
3.6 Sk)Sk∪fPCj* g
3.7 ELSE

3.8 BREAK WHILE

3.9 END IF

3.10 END WHILE

3.11 END FOR

Step 4 Choose the best one from K candidate subsets as the

optimized subset

4.1 Among the K candidate subsets, the one that achieves

the highest value of Acc is chosen as the optimized one:

k* ¼ arg max
1�k�K

AccðfðSkÞÞSoptimized subset)Sk*

4.2 RETURN Soptimized_subset
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is in fact a combinatorial explosion problem. The time complexity
of a brute-force algorithm for selecting the optimal subset is O(2u),
where u is the number of physicalechemical properties considered.
In view of this, here we present a heuristic algorithm, denoted as
HPCS, which can select a suboptimal subset from the given phys-
icalechemical property set with lower time complexity.

Let Sall ¼ fPCigui¼1 be the set of u physicalechemical properties, S
be a subset of Sall, f(S) be the feature representation method based
on S, and K be the predefined positive integer denoting how many
candidate subsets are generated from Sall.

The proposed heuristic algorithm first ranks all of the phys-
icalechemical properties in Sall according to their direct gains in
descending order. Then, the top K physicalechemical properties are
used to construct K initial candidate subsets. After that, the K initial
candidate subsets are gradually expanded by considering the rela-
tive gains of physicalechemical properties. Finally, among the K
candidate subsets, the one that can achieve the best Acc is chosen
as the optimized subset. We describe the details of the proposed
heuristic algorithm as follows:

Step 1: Rank the u physicalechemical properties.

For each physicalechemical property PCi2Sall, we first calculate
its direct gain using Eq. (18). Then, the u physicalechemical prop-
erties are ranked according to their direct gains in descending order,
denoted as

SRank ¼
n
PCkRank

ou

k¼1
:

Step 2: Initialize the K candidate physicalechemical subsets.

The top K physicalechemical properties are selected to initialize
the K candidate subsets as follows:

Sk)
n
PCkRank

o
; 1 � k � K: (19)

Step 3: Expand the K candidate physicalechemical subsets.

Each of the K initial subsets will be gradually expanded by
considering the relative gains of the remaining elements in SRank.

Taking the k-th initial subset as an example, we expand it with
an iterative procedure as follows.

For each of the remaining elements in SRank�Sk, denoted as
PCj

Rank, we first compute its relative gaindthat is, rg(PCj,f,Sk)dac-
cording to Eq. (17).

Then, we can locate the j*-th element, which has the maximal
value of rg, from SRank�Sk as follows:

j* ¼ max
j

rg
�
PCj; f; Sk

	
; where PCj2SRank � Sk: (20)

If rgðPCj* ; f; SkÞ>0, the j*-th element will be added into Sk (Eq.
(21)) because it still has positive relative gain over Sk:

Sk)Sk∪
n
PCj

*
o
: (21)

This expansion process for the k-th subset continues until
rgðPCj* ; f; SkÞ � 0 (i.e., no positive relative gain can be made).

Step 4: Choose the best one from K candidate subsets as the
optimized subset.
After the K candidate subsets have been identified, the one that
can achieve the highest value of Acc is chosen as the optimized
subset, denoted as Soptimized_subset:

k* ¼ arg max
1�k�K

AccðfðSkÞÞ: (22)

Soptimized subset)Sk* : (23)

Algorithm 1 summarizes the procedure of HPCS for optimizing
the subset of physicalechemical properties based on RGoPCP. Note
that the parameter K, which is a positive integer (1< K�u, where u
is the number of physicalechemical properties considered)
denoting how many candidate subsets are generated from Sall,
needs to be prescribed before executing the algorithm. Clearly,
more candidate subsets could be generated with a larger value of K
and, thus, the probability of obtaining the optimal subset will be
higher. However, the computational complexity will also be high
with a large value of K. We should make a trade-off between the
performance and the computational efficiency. We have tested
different values of K (K ¼ 3, K ¼ 5, K ¼ 7, K ¼ 9, and K ¼ 11) and
found that the optimal subset obtained by the algorithm is the
same when K� 5. In view of this, we set K¼ 5 in this study.

As to computational efficiency, it is easy to calculate that the



Table 1
Ranked direct gains of the 23 physicalechemical properties in descending order
under PseDNC feature representation.

Rank Properties Direct gain (%) Rank Properties Direct gain (%)

1 PC2 66.72 13 PC14 65.30
2 PC3 66.49 14 PC4 65.26
3 PC11 66.03 15 PC18 65.07
4 PC9 65.99 16 PC23 64.88
5 PC22 65.80 17 PC5 64.80
6 PC12 65.76 18 PC20 64.80
7 PC19 65.68 19 PC1 64.65
8 PC10 65.53 20 PC15 64.42
9 PC16 65.53 21 PC6 64.31
10 PC13 65.49 22 PC17 64.00
11 PC21 65.49 23 PC7 63.96
12 PC8 65.46
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time complexity of Algorithm 1 is O(K,u2), which is significantly
better than that (O(2u)) of a brute-force algorithm.

1.4. SVM classifier

Support vector machine, which was proposed by Cortes and
Vapnik [50], has been widely used in the realm of bioinformatics
[27e29,46,48,51e53]. The basic idea of SVM is to transform the
input vector into a high-dimension Hilbert space by kernel func-
tions and then seek a separating hyper plane between classes with
the maximal margin in this space. For more information about
SVM, refer to Refs. [54e56].

In this study, the LIBSVM package [57,58], which can be down-
loaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm, was taken
to implement an SVM classifier. The popular radial basis function
(RBF) was chosen as the kernel function, where the regularization
parameter C and the kernel width parameter g were optimized
based on 10-fold cross-validation using a grid search strategy in the
LIBSVM package.

1.5. Performance metrics

Four routinely used indexes in this fielddspecificity (Sp),
sensitivity (Sn), accuracy (Acc), and the Matthews correlation co-
efficient (MCC) [59]dwere taken to evaluate the prediction per-
formances as follows:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Sp ¼ 1
N�
þ

N� 0 � Sp � 1

Sn ¼ 1� Nþ
�

Nþ 0 � Sn � 1

Acc ¼ 1
Nþ
� þ N�

þ
Nþ þ N� 0 � Acc � 1

MCC ¼
1� Nþ

�
Nþ þ N�

þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N�

þ � Nþ
�

Nþ

� �
1þ Nþ

� � N�
þ

N�

� �s �1 � MCC � 1

;

(24)

where Nþ is the total number of positive samples or true methyl-
ation RNA sequence investigated,N� is the total number of negative
samples or non-methylation RNA sequence investigated, Nþ� is the
total number of true methylation RNA samples incorrectly pre-
dicted to be non-methylation RNA samples, and N�þ is the total
number of non-methylation RNA samples incorrectly predicted to
be true.

In addition, the graph of receiver operating characteristic (ROC)
and the area under the ROC curve (AUC) were used to evaluate the
overall prediction qualities of the considered prediction models.
The AUC is threshold independent and increases in direct propor-
tion to prediction performance.

2. Results and discussion

Independent dataset test, sub-sampling (or K-fold cross-
validation) test, and jackknife test (or leave-one-out cross-valida-
tion) have been the routinely used methods for evaluating the
performances of statistical prediction models [60]. Because the
jackknife test can always yield a unique outcome for a given
benchmark dataset, it is considered to be the most objective and
least arbitrary method. Therefore, the jackknife test has been
widely recognized and increasingly used by investigators to
examine the quality of various predictors
[24,26e29,44,48,49,61e64].
In this study, the jackknife test was used to evaluate the per-

formance of the proposed predictor. During the jackknife test, as
elucidated in Ref. [49], each of the samples in the benchmark
dataset is in turn singled out as an independent test sample and all
of the remaining samples are used as training samples. However,
the complexity of the jackknife test is equal to the data volume in
the dataset, which makes it time-consuming to implement. In view
of this, in this study 10-fold cross-validation was used to accelerate
those applications that comprisemultiple iterative procedures (e.g.,
SVM parameter optimization and physicalechemical property
subset optimization in HPCS algorithm), whereas the rigorous
jackknife test was adopted to comprehensively evaluate perfor-
mances of different m6A site predictors.
2.1. Results of direct gain of physicalechemical property

We calculated the direct gains of the 23 physicalechemical
properties with Eq. (18) under both PseDNC and AC þ CC feature
representations. Tables 1 and 2 list the ranked physicalechemical
properties according to their direct gains in descending order under
PseDNC and AC þ CC as feature representations, respectively.

From Table 1, the partial order relationship among the 23
physicalechemical properties under PseDNC feature representa-
tion can be formulated according to their direct gains as follows:

PC2 _PC3 _PC11 _PC9 _PC22 _PC12 _PC19 _PC10

_PC16 _PC13 _PC21 _
PC8 _PC14 _PC4 _PC18 _PC23 _PC5 _PC20 _PC1

_PC15 _PC6 _PC17 _PC7;

(25)

where the symbol “�” is the partial order operator, which means
“greater than or equal to.”

Similarly, the partial order relationship among the 23 phys-
icalechemical properties under AC þ CC feature representation can
be formulated according to their direct gains listed in Table 2 as
follows:

PC11 _PC9 _PC3 _PC8 _PC10 _PC21 _PC12

_PC18 _PC15 _PC23 _PC13 _
PC14 _PC16 _PC22 _PC2 _PC19 _PC17 _PC4

_PC20 _PC5 _PC7 _PC1 _PC6:

(26)

By analyzing Tables 1 and 2, together with Eqs. (25) and (26),
several observations can be made. First, the direct gain of a given
physicalechemical property is closely related to the feature rep-
resentation. As shown in Table 1, the direct gains of the 23 phys-
icalechemical properties under PseDNC feature representation are
all larger than 63%, whereas those under AC þ CC feature

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm


Table 2
Ranked direct gains of the 23 physicalechemical properties in descending order
under AC þ CC feature representation.

Rank Properties Direct gain (%) Rank Properties Direct gain (%)

1 PC11 57.84 13 PC16 55.01
2 PC9 57.50 14 PC22 55.01
3 PC3 57.27 15 PC2 54.55
4 PC8 57.04 16 PC19 54.55
5 PC10 56.85 17 PC17 54.51
6 PC21 56.73 18 PC4 54.44
7 PC12 56.31 19 PC20 54.44
8 PC18 56.31 20 PC5 54.17
9 PC15 55.93 21 PC7 52.83
10 PC23 55.89 22 PC1 52.64
11 PC13 55.85 23 PC6 52.30
12 PC14 55.62
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representation are all smaller than 58%, as illustrated in Table 2.
Second, the partial order relationship of physicalechemical

properties also heavily depends on the feature representation. As
shown in Eqs. (25) and (26), different partial order relationships
were extracted under PseDNC and ACþ CC feature representations.

Third, we find that there does exist certain common-ness be-
tween the two different partial order relationships (refer to Eqs.
(25) and (26)), although they are heavily affected by feature rep-
resentations. For example, 7 physicalechemical propertiesdPC3,
PC11, PC9, PC12, PC10, PC13, and PC21dare ranked among the top 11
properties in both PseDNC- and AC þ CC-based partial order re-
lationships. Similarly, 7 common propertiesdPC4, PC5, PC20, PC1,
PC6, PC17, and PC7dappear in the last 11 properties in both partial
order relationships.

2.2. Optimized subsets of physicalechemical properties

In this section, we apply the proposed heuristic Algorithm 1 to
extract optimized subset of physicalechemical properties for m6A
site prediction. We executed Algorithm 1 under PseDNC and
AC þ CC feature representations, respectively. Note that we set the
value of parameter K to be 5, and the 10-fold cross-validation was
used to evaluate the Acc in applying Algorithm 1. Tables 3 and 4
illustrate the 5 generated candidate subsets of physicalechemical
properties under PseDNC and AC þ CC feature representations,
respectively, after applying Algorithm 1, whereas Fig. 1 plots the
comparisons of prediction accuracies (Acc) among the 5 candidate
subsets under each feature representation. Among the 5 generated
candidate subsets under each feature representation, the one that
achieves the highest value of Acc is selected as the final optimized
subset, as highlighted in bold in Tables 3 and 4. Note that Sall in
Tables 3 and 4 denotes the full set of 23 physicalechemical
properties.

By carefully analyzing the results illustrated in Tables 3 and 4,
and Fig. 1, several observations can be made. First, there are two
optimized subsetsdS2 and S3dunder PseDNC feature representa-
tion because they achieve the same highest value of Acc (67.48%).
Table 3
The 5 generated candidate subsets and the full set of 23 physicalechemical prop-
erties under PseDNC feature representation.

Candidate subset Selected physicalechemical properties Acc (%)

S1 PC2 66.72
S2 PC3,PC11,PC19,PC9,PC6 67.48
S3 PC11,PC3, PC19,PC9,PC6 67.48
S4 PC9, PC3, PC15 66.79
S5 PC22, PC23 66.37
Sall All 23 physicalechemical properties 66.17
We found that the proposed algorithm selected the same 5 phys-
icalechemical properties: {PC3, PC11, PC19, PC9, PC6} ¼ {shift, en-
tropy2, purine (AG) content, enthalpy2, twist}, for S2 and S3. The
only difference between S2 and S3 is the order in which the 5
physicalechemical properties are selected.

Second, we again found that the optimized subset is the second
candidate subset (i.e., S2) under AC þ CC feature representation
with the highest value of Acc (72.23%). Quite different from the
PseDNC feature, under which only 5 of 23 physicalechemical
properties were selected to construct the optimized subset, ACþ CC
feature representation produced 13 properties for constructing the
optimized subset S2 ¼ {PC9, PC3, PC12, PC14, PC6, PC18, PC4, PC2, PC7,
PC23, PC11, PC10, PC8} ¼ {enthalpy, shift, free energy, adenine con-
tent, twist, keto (GT) content, slide, roll, stacking energy, base
stacking energy, entropy2, entropy, enthalpy}. Nevertheless, 4 of
the 5 propertiesdPC3, PC11, PC9, and PC6din the optimized subset
under PseDNC feature representation also appear in the optimized
subset under AC þ CC feature representation, denoting that these 4
physicalechemical properties are especially useful for encoding
RNA sequence for m6A site prediction even under different feature
representations.

Third, it is found that the performance of the optimized subset is
consistently better than that of the full set of 23 physicalechemical
properties under both PseDNC and AC þ CC feature representation.
In addition, the other 4 candidate subsets also outperform the full
set under each of the two feature representations. These observa-
tions demonstrate that the proposed algorithm can really uncover
those most important physicalechemical properties for m6A site
prediction.

2.3. Comparisons with existing m6A site predictors

In this section, we compare the proposed method with several
popular m6A site predictors. For the purpose of fair comparison, we
should compare the proposed method with other m6A site pre-
dictors under the same feature representation. Because currently
PseDNC and ACþ CC are twomajor feature representations, both of
which are physicalechemical property dependent, in existing m6A
site predictors we perform comparisons under these two feature
representations over rigorous jackknife tests.

For the convenience of subsequent description, we term the
proposed method as M6A-HPCS, which encodes RNA samples un-
der either PseDNC or AC þ CC feature representation with the
proposed physicalechemical property selection procedure and
takes SVM as the prediction engine. We also implemented SVM-
based predictor, termed as M6A-SVM, under either PseDNC or
AC þ CC feature representation but without a physicalechemical
property selection procedure.

2.3.1. Comparisons with predictors under PseDNC feature
representation

Table 5 summarizes the comparison results among iRNA-Methyl
[28], M6A-SVM, and M6A-HPCS, all of which are under PseDNC
feature representation and use SVM as the prediction engine.
Fig. 2A plots the ROC curves of the three predictors under PseDNC
feature representation. Note that the differences among the three
predictors are the numbers of nucleotide physicalechemical
properties used to encode RNA samples to PseDNC features; iRNA-
Methyl [28] used 3 physicalechemical properties of nucleotides
(PC8 [enthalpy], PC10 [entropy], and PC12 [free energy]), M6A-SVM
took the entire set of 23 physicalechemical properties, and M6A-
HPCS used an optimized physicalechemical subset ({PC3, PC11,
PC19, PC9, PC6} ¼ {shift, entropy2, purine (AG) content, enthalpy2,
twist}) of the 23 properties. Another issue is how to set the values
of the two parametersdl and wdin the PseDNC encoding scheme.



Table 4
The 5 generated candidate subsets and the full set of 23 physicalechemical properties under AC þ CC feature representation.

Candidate subset Selected physicalechemical properties Acc (%)

S1 PC11, PC3, PC13,PC14, PC4, PC21, PC18, PC19, PC9, PC22, PC6, PC15 71.46
S2 PC9, PC3, PC12, PC14, PC6, PC18, PC4, PC2, PC7, PC23, PC11, PC10, PC8 72.23
S3 PC3, PC17, PC20, PC21, PC23, PC7, PC4, PC15 71.80
S4 PC8,PC3,PC17,PC2,PC19,PC4,PC10 70.93
S5 PC10, PC17, PC3, PC2, PC19, PC4, PC18, PC11, PC6, PC23, PC15 71.76
Sall All 23 physicalechemical properties 70.84

Fig.1. Comparisons of prediction accuracies (Acc) among the 5 generated candidate
subsets and the full set of 23 physicalechemical properties: (A) under PseDNC feature
representation; (B) under AC þ CC feature representation.

Table 5
Comparisons among three m6A site predictorsdiRNA-Methyl, M6A-SVM, and M6A-
HPCSdunder PseDNC feature representation.

Predictor Sp (%) Sn (%) Acc (%) MCC AUC Optimized parameters

iRNA-Methyla 60.63 70.55 65.59 0.29 0.705 C ¼ 32, g ¼ 0.0078
M6A-SVMb 64.50 67.94 66.22 0.32 0.699 C ¼ 512, g ¼ 0.00098
M6A-HPCSc 62.89 71.77 67.33 0.35 0.713 C ¼ 8, g ¼ 0.0625

a Results excerpted from Ref. [28].
b Results obtained with the entire set of 23 physicalechemical properties.
c Results obtained with the optimized subset of the 23 physicalechemical

properties.

Fig.2. ROC curves of the different predictors under PseDNC (A) and ACþ CC (B) feature
representations.
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In iRNA-Methyl [28], Chen and coworkers experimentally demon-
strated that l¼ 6 andw¼ 0.9 are better choices for performingm6A
site prediction. For the purpose of fair comparison, we took the
same parameter setting of l and w to implement M6A-SVM and
M6A-HPCS.

From Table 5, it was found that the proposed M6A-HPCS out-
performs iRNA-Methyl and M6A-SVM regarding the three overall
evaluation indexesdAcc, MCC, and AUCdand acts as the best
performer. The values of Acc, MCC, and AUC of M6A-HPCS are
67.33%, 0.35, and 0.713, respectively, which are 1.74, 6, and 0.8%
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higher than those of iRNA-Methyl, which is a recently released m6A
site predictor. M6A-HPCS is also superior to M6A-SVM, with im-
provements of 1.11, 3, and 1.4% on Acc, MCC, and AUC, respectively,
which further demonstrates the efficacy of the proposed phys-
icalechemical property selection procedure under PseDNC feature
representation.
2.3.2. Comparisons with predictors under AC þ CC feature
representation

We also performed comparisons among pRNAm-PC [27], M6A-
SVM, and M6A-HPCS, all of which are under AC þ CC feature rep-
resentation and use SVM as the prediction engine. In pRNAm-PC
[27], 10 physicalechemical properties were used to encode
AC þ CC features, whereas M6A-SVM and M6A-HPCS took the
entire set and the optimized subset, respectively, of the 23 phys-
icalechemical properties to encode RNA samples to AC þ CC fea-
tures. As to the parameter G in the AC þ CC encoding scheme, we
set its value to be 4 because pRNAm-PC also takes this parameter
configuration. Table 6 summarizes the comparison results among
pRNAm-PC, M6A-SVM, and M6A-HPCS under AC þ CC feature
representation. Fig. 2B plots the ROC curves of the three predictors
under AC þ CC feature representation.

From Table 6, it was found that the proposed M6A-HPCS acts as
the best performer with Acc ¼ 72.38%, MCC ¼ 0.45, and
AUC ¼ 0.782, which are higher than those of pRNAm-PC. Again,
M6A-HPCS outperforms M6A-SVM, indicating the efficacy of
physicalechemical property selection under AC þ CC feature
representation.

In summary, the results listed in Tables 5 and 6 demonstrate that
the proposed physicalechemical property selection algorithm is
helpful for improving the performance of m6A site prediction under
both PseDNC and AC þ CC feature representations. In addition, the
implemented predictor M6A-HPCS, which is based on the proposed
physicalechemical property selection algorithm, outperforms the
existing state-of-the-art m6A site predictors, including iRNA-
Methyl [28] and pRNAm-PC [27].
3. Conclusion

Predicting m6A sites fast and accurately solely from primary
RNA sequences is useful for both basic research and drug devel-
opment. Several recent studies [27,28] have revealed the feasibility
of performing m6A site prediction with physicalechemical prop-
erties of nucleotides but have not explained which phys-
icalechemical properties are better choices. Inspired by these
pioneering works, in this study we proposed a heuristic phys-
icalechemical property selection algorithm that can optimize a
subset from nucleotide physicalechemical properties under the
prescribed feature representation to improve the performance of
m6A site prediction. Based on the proposed HPCS algorithm, we
implemented a predictor, called M6A-HPCS, which can predict m6A
sites from RNA sequences with high accuracy. Experimental results
Table 6
Comparisons among three m6A site predictorsdpRNAm-PC, M6A-SVM, and M6A-
HPCSdunder AC þ CC feature representation.

Predictor Sp (%) Sn (%) Acc (%) MCC AUC Optimized parameters

pRNAm-PCa 69.75 70.55 69.74 0.40 0.763 C ¼ 32, g ¼ 0.0078
M6A-SVMb 69.40 72.15 70.77 0.42 0.771 C ¼ 64, g ¼ 0.00098
M6A-HPCSc 67.41 77.35 72.38 0.45 0.782 C ¼ 128, g ¼ 0.00098

a Results excerpted from Ref. [27].
b Results obtained with the entire set of 23 physicalechemical properties.
c Results obtained with the optimized subset of the 23 physicalechemical

properties.
on benchmark datasets have demonstrated that the proposed
M6A-HPCS is superior to existing sequence-based m6A site pre-
dictors, including iRNA-Methyl and pRNAm-PC. For the conve-
nience of bioinformatics researchers, a web-server based on the
HPCS algorithmwith AC and CC feature representation has been put
online and is available at http://csbio.njust.edu.cn/bioinf/M6A-
HPCS. We believe that the proposed method will complement
existing m6A site predictors and benefit m6A-related research
studies.
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